LUC Cécile
Evaluating the Toxicity of Sediments in Freshwater Environments: Proposing the Amphipod Gammarus fossarum as a European Species for the Development of New Standardized Bioassays
Supervisors: Olivier GEFFARD (ECOTOX - RiverLy, INRAE) and Hélène BUDZINSKI (Univ. Bordeaux)
Doctoral School : E2M2 Ecosystems, Evolution, Modeling, Microbiology, Lyon

Finalist in the International French-Speaking Contest "Ma thèse en 180 secondes", Lyon 2025 Edition

Highlights

Ecotoxicity ; sediments ; Gammarus fossarum 

Abstract

Sediments represent an ecologically important compartment of water bodies, particularly in terms of habitat and food production. However, they also act as a reservoir for both temporary and permanent contamination by many chemical compounds, including inorganic, organic, persistent, and/or emerging substances, posing significant toxicity risks to the species that live in them1. They also present challenges for their management, especially in dredging operations2. In terms of aquatic environment monitoring, sediments have the advantage of integrating the contamination that the environment receives over time. This is a significant asset for assessing the quality of ecosystems and for understanding the chemical pressures on environments over time,3 as well as evaluating the beneficial effects of remediation efforts in degraded aquatic systems4,5.

LUC-Fig1
Sediment-Gammarids Biotests © Cécile Luc, avril 2024

In this context, several standardized bioassays have been developed to assess sediment toxicity, using raw sediment or aqueous extracts such as interstitial water or elutriates, and involving a wide range of species.

Among these species, amphipods are widely used because they are not or only minimally sensitive to many confounding factors such as sediment granulometry and organic matter content6,7. However, in freshwater environments, standardized protocols are only available for the species Hyalella azteca, an amphipod from North America that is not found in France or Europe. Although European species such as Gammarus fossarum and Gammarus pulex are widely used in aquatic ecotoxicology, they are almost never used to assess sediment toxicity8,9. G. fossarum , in particular, has a very large distribution range, being found almost throughout Europe. It is widely used to evaluate the toxicity of chemical contaminants in aquatic environments through laboratory exposures10–13 field studies involving cage experiments14–18. This species is also used nationally by water agencies to assess chemical contamination and toxicity in water bodies, using standardized protocols for cage experiments and measuring several toxicity markers (Afnor-NF T90-721 and Afnor-XP T90-722).

The challenge here is to develop and propose one or more new bioassays for assessing the toxicity of freshwater sediments, incorporating species that are present in European aquatic systems. Specifically, this involves using the amphipod Gammarus fossarum and adapting the existing and standardized methodologies to measure various toxicity markers such as survival, feeding rate, and reproduction.

 

Funding

BIOMAE

References

  • (1)          Casado‐Martinez, C.; Pascariello, S.; Polesello, S.; Valsecchi, S.; Babut, M.; Ferrari, B. J. D. Sediment Quality Assessment Framework for Per‐ and Polyfluoroalkyl Substances: Results from a Preparatory Study and Regulatory Implications. Integr Environ Assess Manag 2021, 17 (4), 716–725. https://doi.org/10.1002/ieam.4412.
  • (2)          Lecomte, T.; Mamindy-Pajany, Y.; Lors, C.; Lemay, M.; Abriak, N.-E.; Bazin, C.; Vernus, E. A Methodological Approach for Ecotoxicological Characterization of Non-Hazardous Sediments for Their Beneficial Reuse. J Soils Sediments 2020, 20 (6), 2608–2618. https://doi.org/10.1007/s11368-019-02543-9.
  • (3)          Siegler, K.; Phillips, B. M.; Anderson, B. S.; Voorhees, J. P.; Tjeerdema, R. S. Temporal and Spatial Trends in Sediment Contaminants Associated with Toxicity in California Watersheds. Environmental Pollution 2015, 206, 1–6. https://doi.org/10.1016/j.envpol.2015.06.028.
  • (4)          Steevens, J. A.; Besser, J. M.; Dorman, R. A.; Sparks, D. W. Influence of Remediation on Sediment Toxicity within the Grand Calumet River, Indiana, USA. Chemosphere 2020, 249, 126056. https://doi.org/10.1016/j.chemosphere.2020.126056.
  • (5)          Harwood, A. D.; Sutherland, G. E.; Woller-Skar, M. M.; Lydy, M. J.; Borrello, M. C. Evaluating Toxicity Risk in Sediments after Remediation at a Superfund Megasite Using a Triad Approach. Environ Monit Assess 2019, 191 (11), 665. https://doi.org/10.1007/s10661-019-7870-9.
  • (6)          Destefani, A.; Friedrichsen, J. C.; Resgalla Jr, C.; Destefani, A.; Friedrichsen, J. C.; Resgalla Jr, C. Evaluation of Potential Confounding Factors in Sediment Toxicity Tests with Hyalella Azteca (Saussure, 1858). Latin american journal of aquatic research 2018, 46 (4), 791–798. https://doi.org/10.3856/vol46-issue4-fulltext-16.
  • (7)          Masikane, N.; Newman, B.; Scharler, U. Grandidierella Lignorum (Amphipoda: Aoridae) Can Be Used for Assessing the Toxicity of Sediment with Varying Grain Sizes and Low Organic Content. African Journal of Aquatic Science 2019, 44 (2), 163–170. https://doi.org/10.2989/16085914.2019.1608152.
  • (8)          Mazurová, E.; Hilscherová, K.; Šídlová-Štěpánková, T.; Köhler, H.-R.; Triebskorn, R.; Jungmann, D.; Giesy, J. P.; Bláha, L. Chronic Toxicity of Contaminated Sediments on Reproduction and Histopathology of the Crustacean Gammarus Fossarum and Relationship with the Chemical Contamination and in Vitro Effects. J Soils Sediments 2010, 10 (3), 423–433. https://doi.org/10.1007/s11368-009-0166-x.
  • (9)          Kontchou, J. A.; Nachev, M.; Sures, B. Ecotoxicological Effects of Traffic-Related Metal Sediment Pollution in Lumbriculus Variegatus and Gammarus Sp. Environmental Pollution 2021, 268, 115884. https://doi.org/10.1016/j.envpol.2020.115884.
  • (10)        Dayras, P.; Charmantier, G.; Chaumot, A.; Vigneron, A.; Coquery, M.; Quéau, H.; Artells, E.; Lignot, J.-H.; Geffard, O.; Issartel, J. Osmoregulatory Responses to Cadmium in Reference and Historically Metal Contaminated Gammarus Fossarum (Crustacea, Amphipoda) Populations. Chemosphere 2017, 180, 412–422. https://doi.org/10.1016/j.chemosphere.2017.04.016.
  • (11)        Baudrimont, M.; Andrei, J.; Mornet, S.; Gonzalez, P.; Mesmer-Dudons, N.; Gourves, P.-Y.; Jaffal, A.; Dedourge-Geffard, O.; Geffard, A.; Geffard, O.; Garric, J.; Feurtet-Mazel, A. Trophic Transfer and Effects of Gold Nanoparticles (AuNPs) in Gammarus Fossarum from Contaminated Periphytic Biofilm. Environ Sci Pollut Res 2018, 25 (12), 11181–11191. https://doi.org/10.1007/s11356-017-8400-3.
  • (12)        Geffard, O.; Xuereb, B.; Chaumot, A.; Geffard, A.; Biagianti, S.; Noël, C.; Abbaci, K.; Garric, J.; Charmantier, G.; Charmantier-Daures, M. Ovarian Cycle and Embryonic Development in Gammarus Fossarum: Application for Reproductive Toxicity Assessment. Environmental Toxicology and Chemistry 2010, 29 (10), 2249–2259. https://doi.org/10.1002/etc.268.
  • (13)        Coulaud, R.; Geffard, O.; Vigneron, A.; Quéau, H.; François, A.; Chaumot, A. Linking Feeding Inhibition with Reproductive Impairment in Gammarus Confirms the Ecological Relevance of Feeding Assays in Environmental Monitoring. Environmental Toxicology and Chemistry 2015, 34 (5), 1031–1038. https://doi.org/10.1002/etc.2886.
  • (14)        Besse, J.-P.; Coquery, M.; Lopes, C.; Chaumot, A.; Budzinski, H.; Labadie, P.; Geffard, O. Caged Gammarus Fossarum (Crustacea) as a Robust Tool for the Characterization of Bioavailable Contamination Levels in Continental Waters: Towards the Determination of Threshold Values. Water Research 2013, 47 (2), 650–660. https://doi.org/10.1016/j.watres.2012.10.024.
  • (15)        Catteau, A.; Bado-Nilles, A.; Beaudouin, R.; Tebby, C.; Joachim, S.; Palluel, O.; Turiès, C.; Chrétien, N.; Nott, K.; Ronkart, S.; Geffard, A.; Porcher, J.-M. Water Quality of the Meuse Watershed: Assessment Using a Multi-Biomarker Approach with Caged Three-Spined Stickleback (Gasterosteus Aculeatus L.). Ecotoxicology and Environmental Safety 2021, 208, 111407. https://doi.org/10.1016/j.ecoenv.2020.111407.
  • (16)        Lopes, C.; Chaumot, A.; Xuereb, B.; Coulaud, R.; Jubeaux, G.; Quéau, H.; François, A.; Geffard, O. In Situ Reproductive Bioassay with Caged Gammarus Fossarum (Crustacea): Part 2—Evaluating the Relevance of Using a Molt Cycle Temperature-Dependent Model as a Reference to Assess Toxicity in Freshwater Monitoring. Environmental Toxicology and Chemistry 2020, 39 (3), 678–691. https://doi.org/10.1002/etc.4656.
  • (17)        Lacaze, E.; Devaux, A.; Mons, R.; Bony, S.; Garric, J.; Geffard, A.; Geffard, O. DNA Damage in Caged Gammarus Fossarum Amphipods: A Tool for Freshwater Genotoxicity Assessment. Environmental Pollution 2011, 159 (6), 1682–1691. https://doi.org/10.1016/j.envpol.2011.02.038.
  • (18)        Gouveia, D.; Chaumot, A.; Charnot, A.; Almunia, C.; François, A.; Navarro, L.; Armengaud, J.; Salvador, A.; Geffard, O. Ecotoxico-Proteomics for Aquatic Environmental Monitoring: First in Situ Application of a New Proteomics-Based Multibiomarker Assay Using Caged Amphipods. Environ. Sci. Technol. 2017, 51 (22), 13417–13426. https://doi.org/10.1021/acs.est.7b03736.

Communication

  • Webinaire H20 Lyon, March 2025 , 21st